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Abstract — Wild rodents serve as reservoirs for Cryptosporidium and are overpopulated globally. However, genetic
data regarding Cryptosporidium in these animals from China are limited. Here, we have determined the prevalence and
genetic characteristics of Cryptosporidium among 370 wild rodents captured from three distinct locations in the
southern region of Zhejiang Province, China. Fresh feces were collected from the rectum of each rodent, and DNA
was extracted from them. The rodent species was identified by PCR amplifying the vertebrate cytochrome b gene.
Cryptosporidium was detected by PCR amplification and amplicon sequencing the small subunit of ribosomal RNA
gene. Positive samples of C. viatorum and C. parvum were further subtyped by analyzing the 60-kDa glycoprotein
gene. A positive Cryptosporidium result was found in 7% (26/370) of samples, involving five rodent species:
Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155), and R. tanezumi (86). Their
respective Cryptosporidium positive rates were 8.3%, 5.3%, 11.1%, 7.1%, and 7.0%. Sequence analysis confirmed the
presence of three Cryptosporidium species: C. parvum (4), C. viatorum (1), and C. muris (1), and two genotypes:
Cryptosporidium rat genotype IV (16) and C. mortiferum-like (4). Additionally, two subtypes of C. parvum (IIdA15G1
and IIpA19) and one subtype of C. viatorum (XVdA3) were detected. These results demonstrate that various wild
rodent species in Zhejiang were concurrently infected with rodent-adapted and zoonotic species/genotypes of
Cryptosporidium, indicating that these rodents can play a role in maintaining and dispersing this parasite into the
environment and other hosts, including humans.
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Résumé — Transmission interspécifique de Cryptosporidium chez les rongeurs sauvages de la région sud de la
province chinoise du Zhejiang et son impact possible sur la santé publique. Les rongeurs sauvages servent de
réservoirs a Cryptosporidium et ont des grandes populations a 1’échelle mondiale. Cependant, les données
génétiques concernant Cryptosporidium chez ces animaux en Chine sont limitées. Ici, nous avons déterminé la
prévalence et les caractéristiques génétiques de Cryptosporidium parmi 370 rongeurs sauvages capturés dans trois
endroits distincts de la région sud de la province du Zhejiang, en Chine. Des excréments frais ont été collectés
dans le rectum de chaque rongeur et I’ADN en a été extrait. L’espéce de rongeur a été identifiée par amplification
par PCR du géne du cytochrome b des vertébrés. Cryptosporidium a été détecté par amplification PCR et
séquencage d’amplicons de la petite sous-unit¢é du geéne de I’ARN ribosomal. Les échantillons positifs de
C. viatorum et C. parvum ont ensuite été sous-typés en analysant le gene de la glycoprotéine de 60 kDa. Un
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et C. muris (1), et de deux génotypes :

Introduction

Cryptosporidium, a protozoan parasite that colonizes the
intestines, is a significant contributor to moderate to chronic
diarrhea and related fatalities among children under two years
of age and immunocompromized patients (HIV-positive)
[4, 34]. Additionally, Cryptosporidium has been identified as
able to infect over 260 species of animals [24]. Humans can
acquire this parasite through various routes, encompassing
direct contact with infected individuals or animals, and inges-
tion of contaminated water and food [35]. The public health
importance of cryptosporidiosis became evident with the global
recognition of Cryptosporidium as the predominant waterborne
parasite [8]. To effectively minimize the frequency of Cryp-
tosporidium outbreaks, it is imperative to identify potential
sources of infection and likely modes of transmission [13].
Thus, monitoring Cryptosporidium in different hosts becomes
critical, especially in animal hosts in close contact with humans.

A wide range of molecular epidemiological strategies have
been used to characterize Cryptosporidium species at species/
genotype and subtype levels [24]. Currently, this parasite has
been identified with an estimated 120 genotypes and 50 valid
species [23, 26]. Moreover, almost 21 distinct species/
genotypes of this parasite have been found in humans, primarily
as a result of zoonotic transmission, where the infection is trans-
mitted from animals to humans [23]. Rodents, as a key reservoir
of Cryptosporidium, have attracted widespread attention, partic-
ularly wild ones, considering their involvement alongside vari-
ous animals (domestic, stray, and wild) and water sources in
maintaining the stability and continuity of the Cryptosporidium
transmission cycle. The presented data indicate that rodents
harbor a minimum of 25 species and 48 genotypes of
Cryptosporidium. Among these, wild rodents harbor 21 species
and 32 genotypes, with C. parvum being the most common
species [36]. Therefore, wild rodents potentially play a pivotal
role in the transmission of zoonotic Cryptosporidium species.
Despite this understanding, significant gaps exist concerning
the incidence of Cryptosporidium infection in various nations
and territories. For instance, in China, molecular studies on
Cryptosporidium species in wild rodent species have been
restricted to a small number of species [15, 22, 36].

Cryptosporidium species have been observed to exhibit a
high prevalence in diverse animal species, including pigs, cattle,
chickens, and horses, within the geographical region of
Zhejiang Province, China [9, 28, 33, 40]. Moreover, they have
also been found in patients with diarrhea, as well as in the
source water of several cities of this province [2, 21, 37]. How-
ever, currently, there is only one study that confirms the pres-
ence of this parasite in R. norvegicus from Jiaxing City in

résultat positif pour Cryptosporidium a été trouvé dans 7 % (26/370) des échantillons, impliquant cinq especes de
rongeurs : Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155) et R. tanezumi
(86). Leurs taux respectifs de positivité pour Cryptosporidium étaient de 8,3 %, 5,3 %, 11,1 %, 7,1 % et 7,0 %.
L’analyse des séquences a confirmé la présence de trois especes de Cryptosporidium : C. parvum (4), C. viatorum (1)
Cryptosporidium génotype IV de rat (16) et C. mortiferum-like (4). De plus,
deux sous-types de C. parvum (IIdA15G1 et lIpA19) et un sous-type de C. viatorum (XVdA3) ont ét¢ détectés. Ces
résultats démontrent que diverses espéces de rongeurs sauvages du Zhejiang sont simultanément infectées par des
especes/génotypes de Cryptosporidium zoonotiques et adaptés aux rongeurs, ce qui indique que ces rongeurs peuvent
jouer un role dans le maintien et la dispersion de ce parasite dans I’environnement et d’autres hotes, y compris les humains.

Zhejiang [22]. The objective of the present study was to inves-
tigate the distribution, prevalence, and genetic characteristics
of Cryptosporidium species among wild rodents residing in
southern Zhejiang Province.

Materials and methods
Ethics

The present study was conducted as per the recommenda-
tions of the Chinese Laboratory Animal Administration Act
(1988), which regulates the ethical handling and use of animals
in scientific studies. All protocols were carefully examined and
approved by the Research Ethics Committee of Wenzhou
Medical University (SCILLSC-2021-01).

Sample collection

A total of 370 wild rodents were trapped in three distinct
locations within rural areas immediately adjacent to human
habitations in Zhejiang Province, between April 1 and October
14, 2023 (specifically, encompassing the second week of April,
June, August, and October in the year 2023) (Fig. 1). Among
these, 68 were caught in Yueqing (Honggiao), 102 in Yongjia
(Yantou), and 200 in Rui’an (Tangxia, Pandai, Shangwang).
All wild rodents were trapped in cage traps baited with deep-
fried dough sticks. In each designated location, around 50 cage
traps were deployed at sunset and collected before sunrise.
The traps were positioned in a linear setup, with 5 m between
each trap, forming transects. All rodents were shifted to the
controlled laboratory environment within 48 h following their
capture and euthanized via CO, inhalation. Data related to
the collection time and region was noted after these rodents
were captured via trapping. Following that, a fresh feces sample
(500 mg) was obtained immediately from the rectum of
each rodent. The sample was then stored in ice boxes and
shifted to the laboratory, where its DNA was extracted within
a week.

DNA extraction

As per the manufacturer’s recommendations, genomic
DNA was isolated from each processed sample (200 mg) via
a QIAamp DNA Mini Stool Kit (QIAGEN, Hilden, Germany).
To achieve a significant yield of DNA, the lysate temperature
was elevated to 95 °C. Before the PCR analysis, the DNA
reconstituted in 200 pL of AE elution buffer (supplied with
the kit) was kept at —20 °C.
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Figure 1. Map of rodent sampling locations in Wenzhou, Zhejiang Province, China. The figure was originally designed by the authors under
ArcGIS 10.4 software. The original vector diagram imported in ArcGIS was adapted from the National Geomatics Center of China (http:/
www.ngcc.cn). The map has been modified and assembled according to permission and attribution guidelines.

Identification of rodent species

The rodent species were identified via PCR amplification of
the vertebrate cytochrome b (cytb) gene with 421 bp amplified
from fecal DNA. The primer design and PCR conditions were
in line with the guidelines defined by Verma and Singh (2003)
[27]. Each PCR reaction was comprised of 35 cycles, which
included denaturation at 94 °C for 30 s, annealing at 51 °C
for 30 s, and extension at 72 °C for 30 s. An initial denaturation
step was also performed at 94 °C for 5 min, followed by the
completion of a final extension at 72 °C for 5 min.

Cryptosporidium genotyping and subtyping

Nested PCR was performed on all isolated DNA with a
specific target, using an 830 bp fragment of the partial small
subunit of ribosomal RNA (SSU rRNA) gene of Cryptosporid-
ium for amplification. Based on a previous description, primers
were synthesized [32]. The 60-kDa glycoprotein (gp60) gene
was amplified using nested PCR, enabling the further subtyping
of positive isolates of C. parvum and C. viatorum using the
same primers previously designed by Alves et al. (2003) and
Stensvold et al. (2015), respectively [1, 25]. In every PCR
amplification process, TaKaRa Taq DNA Polymerase (TaKaRa
Bio Inc., Tokyo, Japan) was utilized. To ensure the validity of
the reactions, positive controls, which contain C. bailey DNA
derived from chickens, and negative controls, where no DNA
template is included, were incorporated in every PCR reaction.
Before sequencing, secondary PCR products were observed on

1.5% agarose gels, followed by staining with GelRed (Biotium,
Fremont, CA, USA).

Sequencing and phylogenetic analysis

The commercial sequencing of amplified products of SSU
rRNA and gp60 genes of Cryptosporidium spp. was performed
by Sangon Biotech (Shanghai) Co., Ltd. (Shanghai, China).
Two-way sequencing was used to validate the accuracy of
the sequence. To examine the species and subtype of Cryp-
tosporidium species, the identified sequences were aligned with
the reference sequences obtained from the National Center for
Biotechnology (https://www.ncbi.nlm.nih.gov/) using ClustalX
2.0 (http://www.clustal.org/). In MEGA 11, a neighbor-joining
(NJ) method with a Kimura 2-parameter model was used to
conduct phylogenetic analyses, with the objective of assessing
the phylogenetic relationships among the sequences obtained
in this study and pertinent reference sequences available in
GenBank. The clusters’ stability was evaluated using 1000
replicates and Bootstrap analysis.

Statistical analyses

Data analysis was performed with SPSS version 22.0 (SPSS
Inc., Chicago, IL, USA). The chi-square test was utilized to
compare the prevalence of Cryptosporidium spp. between
areas, gender, rodent species and season groups, respectively.
A p-value < 0.05 was considered indicative of statistical
significance.
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Table 1. Prevalence and species/genotype of Cryptosporidium in the investigated rodent by species, season, gender, and location.

Category Positive/examined (%)

Cryptosporidium spp./genotype (n)

Rodent species

Apodemus agrarius 3/36 (8.3)

Niviventer niviventer 4/75 (5.3)

Rattus losea 2/18 (11.1)
Rattus norvegicus 11/155 (7.1)
Rattus tanezumi 6/86 (7.0)

Season

Spring 11/119 (9.2)
Summer 8/160 (5.0)
Autumn 791 (7.7)

Gender

Female 9/195 (4.6)
Male 17/175 (9.7)
Location

Yueqing 10/68 (14.7)
Yongjia 3/102 (2.9)
Rui’an 13/200 (6.5)
Total 26/370 (7.0)

C. parvum (2), C. muris (1)
Cryptosporidium rat genotype IV (4)
Cryptosporidium rat genotype IV (2)

C. mortiferum-like (4), Cryptosporidium rat genotype IV (4),

C. parvum (2), C. viatorum (1)
Cryptosporidium rat genotype IV (6)

Cryptosporidium rat genotype IV (4), C. mortiferum-like (4),

C. parvum (2), C. viatorum (1)

Cryptosporidium rat genotype IV (5), C. parvum (2), C. muris (1)

Cryptosporidium rat genotype IV (7)

Cryptosporidium rat genotype IV (3), C. mortiferum-like (4),

C. parvum (1), C. muris (1)

Cryptosporidium rat genotype 1V (13), C. parvum (3), C. viatorum (1)

Cryptosporidium rat genotype IV (7), C. parvum (2), C. viatorum (1)
Cryptosporidium rat genotype IV (2), C. mortiferum-like (1)
Cryptosporidium rat genotype 1V (7), C. mortiferum-like (3),

C. parvum (2), C. muris (1)
Cryptosporidium rat genotype IV (16), C. parvum (4),
C. mortiferum-like (4), C. viatorum (1), C. muris (1)

Nucleotide sequence accession numbers

The nucleotide sequences of Cryptosporidium obtained in
this study were deposited in the GenBank database under
accession numbers PP038021 to PP038023 and PP038026
to PP038028 for SSU rRNA, and PP104938 to PP104940 for
gp60.

Results
Study population

This study used PCR and sequencing analysis of the cytb
gene to identify five species of rodents, including Rattus
norvegicus (n = 155), R. tanezumi (n = 86), Niviventer niviven-
ter (n =75), Apodemus agrarius (n = 36) and R. losea (n = 18)
(Table 1 and Table S1). The majority of samples were obtained
in the summer (43.2%, 160/370), then in spring (32.2%,
119/370) and autumn (24.6%, 91/370); none were collected
in the winter. The sex of the rodents was reported as 52.7%
(195/370) females and 47.3% (175/370) males (Table 1 and
Table S1).

Prevalence of Cryptosporidium infection

Nested PCR was conducted on 370 fecal samples to
evaluate the existence of Cryptrosporidium species via the
SSU rRNA gene. A total of 26 samples tested positive for this
parasite with an average (7.0%) infection rate. Cryptosporidium
existed in all three areas, with infection rates of 14.7%
(Yeqing), 2.9% (Yongjia), and 6.5% (Rui’an) (Table 1 and
Table S1). Statistical analysis revealed significant variations
in the prevalence of Cryptrosporidium among the three regions
(% = 8.829; df = 2; p = 0.012).

The infection rates of Cryptosporidium vary among rodent
species, ranging from 5.3% (4/75) in N. niviventer to 11.1%
(2/18) in R. losea, with 7.1% (11/155) in R. norvegicus, 7.0%
(6/86) in R. tanezumi, and 8.3% (3/36) in A. agrarius (Table 1
and Table S1). The highest detection rate of Cryptosporidium in
rodents collected in spring, reaching 9.2% (11/119), followed
by 7.7% (7/91) in autumn, and 5.5% (8/160) in summer
(Table 1 and Table S1). However, the difference between infec-
tion rates of Cryptosporidium in the groups of rodent species
and seasons was not regarded as statistically significant
(p > 0.05). In relation to gender, the incidence of Cryptosporid-
ium was comparatively lower in female (4.6%) (9/195) than in
male (9.7%; 17/175) rodents, but without statistical significance
(> =3.67; df = 1; p = 0.06) (Table 1 and Table SI).

Cryptosporidium species/genotypes distribution

Five Cryptosporidium species or genotypes were detected,
including Cryptosporidium rat genotype IV (n = 16), C. parvum
(n = 4), C. mortiferum-like genotype (n = 4), C. viatorum
(n=1), and C. muris (n=1) (Table 1 and Table S1). The preva-
lence of Cryptosporidium rat genotype IV was observed to be
predominant (61.5%; 16/26) among the wild rodent population.
This genotype was detected in four out of the five rodent
species, except A. agrarius (Table 1 and Table S1). Of the four
C. parvum isolates, two each were found in R. norvegicus and
A. agrarius. Cryptosporidium mortiferum-like was only found
in R. norvegicus, while C. viatorum and C. muris were identi-
fied in a single R. norvegicus and A. agrarius, respectively
(Table 1 and Table S1).

The sampling sites exhibit differences in the distribution of
Cryptosporidium species. Specifically, Yeqing yielded the
Cryptosporidium rat genotype IV, C. viatorum and C. parvum.
Yongjia yielded C. mortiferum-like and Cryptosporidium rat
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genotype IV. While Cryptosporidium rat genotype IV,
C. parvum, C. muris and C. mortiferum-like were discovered
in Rui’an (Table 1 and Table S1).

Meanwhile, Cryptosporidium rat genotype IV was detected
throughout all three seasons, whereas C. muris was exclusively
detected in the summer. Conversely, C. viatorum and
C. mortiferum-like were only detected in the spring (Table 1).
In terms of gender, both male and female rodents were found
to harbor Cryptosporidium rat genotype IV and C. parvum,
whereas only female rodents were found to possess C. muris
and C. mortiferum-like, and male rodents were found to harbor
C. viatorum (Table 1 and Table S1).

Genetic identification of Cryptosporidium
species/genotypes

At the SSU rRNA locus, among the 16 sequences of Cryp-
tosporidium rat genotype IV, 10 and six sequences were identi-
cal and had 100% similarity with the sequence AY737582 of
genotype W19 variant in storm water from the USA and
MG917671 of genotype W19 variant in brown rats from China,
respectively (Table S2). Four sequences of C. parvum were
identical and had 100% similarity with the sequence
OM146539 of C. parvum in humans from Sweden, as well as
eight other sequences in Macaca mulatta or bamboo rats from
China (Table S2). The four C. mortiferum-like isolates pos-
sessed identical sequences which have not been documented
previously and exhibit a sequence similarity of 98.78% to the
C. mortiferum sequence (OP935211) detected in humans from
the USA (Table S2). The sequence of C. viatorum was similar
and it has not been documented previously and exhibited homol-
ogy of 99.61% to the sequence MK522270 of C. viatorum iso-
lated in Berylmys bowersi from China (Table S2). The sequence
of C. muris exhibited 100% identity to KF419208, which is
found in R. norvegicus from China (Table S2). In the phyloge-
netic tree, the sequences belonging to the same species were
shown to form distinct clusters, as depicted in Figure 2.

At the gp60 gene locus, successful amplification was
achieved for C. viatorum and three C. parvum-positive isolates.
Two of the three gp60 sequences obtained from C. parvum
exhibited 100% resemblance to the sequence of M. mulatta in
China, from which C. parvum subtype IIdA15G1 (KJ917586)
was identified (Table S2). The other one, gp60 sequence of
C. parvum, shared 100% similarity to subtype IIpA6
(MK956001) from bamboo rats in China (Table S2). The C.
viatorum sample had the same gp60 sequence which has not
been documented in the previous literature and possesses a
nucleotide similarity of 99.51% with the well-documented sub-
type XVdA3 (MK433560) of C. viatorum originating from
Leopoldamys edwardsi in China (Table S2). Figure 3 presents
the phylogenetic tree, showing the genetic correlations among
the gp60 subtypes of C. parvum and C. viatorum.

Discussion

In the present study, the average rate of Cryptosporidium
infection among the identified rodents was 7.0%, which was
found to be lower than the aggregated global rate for wild

rodents (20.5%), as determined by Zhang et al. [36]. In China,
Cryptosporidium has been found in a variety of rodents, where
the infection rates vary by their types, such as 4.0-73.9% in
wild rodents, 2.1-29.5% in farmed rodents, 0.6-8.6% in lab
rodents and 1.4-100% in pet rodents [22, 36]. The differences
in rodent species, detection strategies, animal age, sample size,
and study locations might be responsible for the disparity in
prevalence.

The present study identified five Cryptosporidium species/
genotypes including Cryptosporidium rat genotype 1V,
C. mortiferum-like, C. parvum, C. viatorum and C. muris.
Multiple studies have demonstrated that rats serve as a predom-
inant host species for Cryptosporidium rat genotype IV
(formerly known as Cryptosporidium environmental sequence,
Cryptosporidium genotypes W19, or W19 variant) [36, 39].
Cryptosporidium rat genotype IV has previously been found
in Asian house rats, Edward’s long-tailed rats, Muridae, and
brown rats from China [6, 38], and it has also been identified
in rats from Japan, Spain and Sweden [3, 14, 17]. However,
despite the discovery of Cryptosporidium rat genotype IV in
Asiatic black bears and cats from China and in one-humped
camels from Egypt, limited data exist regarding the chances
for infection of humans and other animals by Cryptosporidium
rat genotype IV [7, 19, 29]. Consequently, the possibility of this
genotype inducing disease in livestock or humans remains
uncertain. Further systemic molecular epidemiological studies
into Cryptosporidium species with a wider range of hosts are
required in the future to identify the exact host distribution of
Cryptosporidium rat genotype IV.

Zoonotic species include C. muris, C. viatorum and
C. parvum, due to the extensive documentation of their infec-
tions in humans and a diverse array of mammalian hosts
[23]. For example, C. parvum, which is prevalent in rodents
worldwide, has been consistently identified in wildlife, having
infected over 40 species of wild animals [23, 36]. In China
16.7% of human cases (44/263) of cryptosporidiosis were
attributed to C. parvum, a prevalent pathogen in farmed
animals, including cattle, sheep, and goats [12, 20]. Further,
18.7% of rodent-derived Cryptosporidium cases (189/1010)
had been confirmed to be caused by C. parvum [36]. Initially,
C. viatorum was detected in travelers from the Indian subcon-
tinent who had arrived in the United Kingdom [7]. More
than 13 countries, including China, have reported cases of
C. viatorum in humans [25, 31]. Further analysis revealed the
presence of C. viatorum in several rodent species, including
R. rattus from France, R. lutreolus from Australia and Leopol-
damys edwardsi and Berylmys bowersi from China [10, 16, 38].
Additionally, C. muris has been extensively documented in
various mammalian hosts, such as rodents, felids, canids,
equids, suids, non-human primates, etc. [23]. The transmission
of C. parvum, C. viatorum and C. muris from wild rodent
species to humans and other animals via cross-species contact
could, therefore, not be ignored.

This study identified a novel genotype in R. norvegicus that
shares genetic similarities to C. mortiferum (Cryptosporidium
chipmunk genotype 1), named C. mortiferum-like. The
sequences of C. mortiferum-like discovered in this study have
not been previously reported in the literature. However, it is
well known that C. mortiferum can infect people, and several
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Figure 2. Phylogenetic tree of Cryptosporidium species based on SSU rRNA sequences. The tree was generated using a neighbor-joining
analysis, with genetic distances calculated via the Kimura 2-parameter model. Bootstrap values (>50%) derived from 1000 replicates are
displayed to the left of the nodes for reliability assessment. The sequences generated in the present study are indicated with the solid circles.

human cases have been reported [11, 23, 26]. Therefore, IaA15G2R1, IIaA15G2R2, IIaA13G2R2, IIdA15G1 and

C. mortiferum-like is highly likely to also have the ability to
infect people, and of course, clear evidence needs to be pro-
vided through more research in the future. The discovery of
novel sequences of Cryptosporidium in R. norvegicus suggests
the existence of some novel Cryptosporidium species/
genotypes in wild rodents. This is primarily due to the order
of rodents having the most diverse of all mammalian groups.
In the evaluation of C. parvum in both animals and humans,
subtyping tools are frequently used. The transmission of
C. parvum between animals and humans was enhanced via
the application of subtype-specific molecular diagnostic tools
[12, 24]. At least 15 subtype families for C. parvum were
detected via gp60 gene analysis, including Ila-Ili and IIk-IIp
[12]. In China, at least 20 subtypes have been identified, with

IIdA14G1 being found in humans [12, 20]. Wild rodents were
examined in the present study that observed two subtypes
(IIdA15G1 and IIpA6) of C. parvum. The subtype IIdA15G1
is one of the prevalent subtypes found in cattle, exhibiting a
diverse geographic distribution across China [12]. Its elevated
mortality rate among pre-weaned dairy calves in China has
been attributed to multiple outbreaks of cryptosporidiosis
[5, 12]. Furthermore, the subtype was subsequently detected
in non-human primates and humans in China, which provides
further evidence for the possibility of zoonotic transmission
[12, 30, 37]. Thus, IIdA15Gl-infected wild rodents pose a
potential risk to both humans and other animals. However,
IIpA6 has only been detected in bamboo rodents thus far, and
its potential to infect humans and livestock is unknown [18].
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Figure 3. Phylogenetic relationships of gp60 subtypes of C. parvum and C. viatorum identified in the study and other gp60 subtype sequences
deposited in GenBank, as inferred by a neighbor-joining analysis of gp60 sequences based on the genetic distance by the Kimura 2-parameter
model. The numbers displayed on the branches represent the percentage bootstrapping outcomes derived from 1000 replicates. The sequences

generated in the present study are indicated with solid circles.

A comprehensive understanding of the host range of subtype
IIpA6 of Cryptosporidium species would require systematic
molecular epidemiological studies across a wider range of hosts.

Conclusions

The present study provided evidence of the presence of
Cryptosporidium in five species of wild rodents in Zhejiang,
China, with an average infection rate of 7.0%. The presented
molecular findings suggest that Cryptosporidium rat genotype
IV predominantly infect wild rodents. As a result, these rodents
have a restricted capacity to serve as natural reservoirs for
human infections. In contrast, the discovery of C. muris, C. par-
vum, C. mortiferum-like, C. viatorum and C. viatorum suggests
a connection between rodents and humans. This finding demon-
strates that animals infected with Cryptosporidium have sub-
stantial zoonotic potential and indicates that wild rodents
could serve as a reservoir for human cryptosporidiosis caused
by the Cryptosporidium species above.
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